hyperbolic function造句
例句與造句
- Chapter 4 gives hyperbolic function transformation method and its applications
第四章討論了雙曲函數(shù)變法及其應(yīng)用 - Extended hyperbolic function method and new exact solitary wave solutions of zakharov equations
方程組的新精確孤立波解 - Arc hyperbolic function
反雙曲函數(shù) - Modified hyperbolic function method and exact solutions to nonlinear evolution equations
修正雙曲函數(shù)法與非線性發(fā)展方程的精確解 - At last , we construct hyperbolic polynomial curves in the space of hyperbolic functions . we call them as hc - bezier curves
文章最后運(yùn)用同樣的方法在雙曲函數(shù)空間中構(gòu)造了hc - b zier曲線。 - It's difficult to find hyperbolic function in a sentence. 用hyperbolic function造句挺難的
- A general class of solutions to nonlinear scalar equations with static cylindrical symmetry is obtained in the form of a hyperbolic function series . these solutions can be used to describe a long . straight global string
利用雙曲函數(shù)級(jí)數(shù)的技術(shù),研究了靜態(tài)軸對(duì)稱非線性標(biāo)量方程的解析解.在物理上.這些解描述了無限長的直整體弦 - Spline curves defined in the space constructed by polynomial and hyperbolic functions are studied in this paper . the main research contents and achievements are as follow : firstly , we generate the cardinal extended complete chebychevian ( ect ) - systems on the space constructed by polynomial and hyperbolic functions , then introduce the algebraic - hyperbolic b - spline space and identify the dimension law and zero properties . the existence of a basis of splines with minimal compact supports is demonstrated , and functions named non - uniform algebraic - hyperbolic b - splines are obtained by solving certain linear equations with a block matrix
本文主要研究定義在多項(xiàng)式和雙曲函數(shù)構(gòu)成的空間上的樣條曲線,其內(nèi)容和完成結(jié)果如下:一、生成由多項(xiàng)式和雙曲函數(shù)構(gòu)成的空間上的一組典范式ect ( extendedcompletechebychevian )組及其對(duì)偶, ,證明非均勻代數(shù)雙曲b樣條空間的維數(shù)定理和零點(diǎn)定理,直接通過解塊矩陣線性方程組得到具有最小緊支撐的非均勻代數(shù)雙曲b樣條函數(shù),進(jìn)而構(gòu)造非均勻代數(shù)雙曲b樣條曲線,還具體給出低階的表示 - In section 1 , some nonlinear wave equations of this part discussing are recommended ; in section 2 , the elementary tool of this part utilizing is mentioned , namely , the hyperbolic function method ; in section 3 , seme exact solitary wave solutions to these nonlinear wave equations are attained
本部分由三節(jié)組成,第一節(jié)介紹了所討論的幾類非線性波動(dòng)方程;第二節(jié)介紹了本部分所使用的基本工具,即,雙曲函數(shù)方法;第三節(jié)給出了這些非線性波動(dòng)方程的若干精確孤立波解。 - The mostly conclusion of this part is as follows , on the conditon of travelling wave , the exact solitary wave solutions to some nonlinear wave equations such as sawada - kotera equation , kaup - kupershmidt equation , the fifth order kdv equation , fisher - kolmogorov equation , on the help of the computer algebraic system ( maple ) , are explicitly established by making use of the hyperbolic function method . this part is maken up of three sections
本部分的主要結(jié)論如下,利用雙曲函數(shù)展開法,在行波條件下,對(duì)sawada - kotera方程, kaup - kupershmidt方程,五階kdv方程, fisher - kolmogorov方程,等幾類非線性波動(dòng)方程求解,將其孤立波表示為雙曲函數(shù)的多項(xiàng)式,從而將非線性波方程的求解問題轉(zhuǎn)化為非線性代數(shù)方程組的求解問題,并借助于計(jì)算機(jī)代數(shù)系統(tǒng)求解非線性代數(shù)方程組,最終獲得了這些非線性波動(dòng)方程的若干精確孤立波解。 - The mathematics - mechanization method is applied the field of differential equations . many algorithm for constructing solitary wave solutions for a class of nonlinear wave equations are given , and implemented in a computer algebraic system , such as the hyperbolic tangent function method and the hyperbolic function method etc . exact solitary wave solutions of a great deal of nonlinear equations are gained
將機(jī)械化數(shù)學(xué)方法應(yīng)用于偏微分方程領(lǐng)域,建立了構(gòu)造一類非線性波方程的精確孤立波解的許多算法,如,雙曲正切函數(shù)展開法,雙曲函數(shù)方法等,并在計(jì)算機(jī)數(shù)學(xué)系統(tǒng)上加以實(shí)現(xiàn),因而推導(dǎo)出了一批非線性波方程的精確孤立波解。 - Firstly we deduce hyperbolic function transformation and then apply to a class of reaction diffusion equation and brusselator reaction diffusion model which has physics , chemistry and biology significance . thus we obtain many new exact and explicit solutions ( including solitary wave soluiton , peoiodic wave solution and rational functions solutions ) to above equations
推導(dǎo)出了雙曲函數(shù)變換,利用此方法探討了一類反應(yīng)擴(kuò)散方程, brusselator反應(yīng)擴(kuò)散方程這些具有物理、化學(xué)、生物意義的方程的精確解(包括奇性孤波解,周期解和有理函數(shù)解) 。 - Therefore , it can be used as an efficient new model for geometric design in the fields of cad / cam . at last , the spatial definition of periodic spline and natural spline constructed by polynomial and hyperbolic functions is given ; the dimension law and zero properties are demonstrated ; and therefore the non - uniform algebraic - hyperbolic period and natural spline curves are obtained . the applications of the low order are given in details
三、給出代數(shù)雙曲周期樣條及自然樣條空間定義,證明其維數(shù)定理和零點(diǎn)定理,構(gòu)造具有最小緊支撐的非均勻代數(shù)雙曲周期及自然樣條函數(shù),進(jìn)而定義非均勻代數(shù)雙曲周期及自然樣條曲線,最后具體給出低階的表示和應(yīng)用 - This paper summaries the researches on the new schemes of parameter curves and surfaces modeling - curves and surfaces modeling of trigonometric polynomial , which includes curves and surfaces of t - bezier , t - b - spline , tc - bezier and tc - b - spline . hc - b zier curves and surfaces are also discussed in the space of hyperbolic functions in the end
本文主要對(duì)參數(shù)曲線曲面造型的一種新方法? ?三角多項(xiàng)式曲線曲面進(jìn)行了深入研究,其內(nèi)容主要包括t - b zier曲線曲面、 t - b樣條曲線曲面、 tc - b zier曲線曲面和tc - b樣條曲線曲面。